
May 2024

OmniJARVIS: Unified Vision-Language-Action
Tokenization Enables Open-World Instruction
Following Agents
Zihao Wang1, Shaofei Cai1, Zhancun Mu1, Haowei Lin1, Ceyao Zhang2, Xuejie Liu1, Qing Li2, Anji Liu3,
Xiaojian Ma2 and Yitao Liang1
1Peking University, 2Beijing Institute for General Artificial Intelligence, 3University of California, Los Angeles

This paper presents OmniJARVIS, a novel Vision-Language-Action (VLA)model for open-world instruction-
following agents in Minecraft. Compared to prior works that either emit textual goals to separate
controllers or produce the control command directly, OmniJARVIS seeks a different path to ensure
both strong reasoning and efficient decision-making capabilities via unified tokenization of multimodal
interaction data. First, we introduce a self-supervised approach to learn a behavior encoder that produces
discretized tokens for behavior trajectories 𝜏 = {𝑜0, 𝑎0, . . . } and an imitation learning (IL) policy decoder
conditioned on these tokens. These additional behavior tokens will be augmented to the vocabulary of
pretrained Multimodal Language Models (MLMs). With this encoder, we then pack long-term multimodal
interactions involving task instructions, memories, thoughts, observations, textual responses, behavior
trajectories, etc. into unified token sequences and model them with autoregressive transformers. Thanks
to the semantically meaningful behavior tokens, the resulting VLA model, OmniJARVIS, can reason (by
producing chain-of-thoughts), plan, answer questions, and act (by producing behavior tokens for the IL
policy decoder). OmniJARVIS demonstrates excellent performances on a comprehensive collection of
atomic, programmatic, and open-ended tasks in open-world Minecraft. Our analysis further unveils the
crucial design principles in interaction data formation, unified tokenization, and its scaling potentials.
The dataset, models, and code will be released at https://craftjarvis.org/OmniJarvis/.

1. Introduction

Upon the success of pretrained Large Language Models (LLMs) (Brown et al., 2020; Cheng et al.,
2024; Gong et al., 2023; OpenAI, 2023; Touvron et al., 2023) and Multimodal Langauge Models
(MLMs) (Alayrac et al., 2022; Hinck et al., 2024; Liu et al., 2024; Man et al., 2024; Zhao et al., 2023),
some recent works have been venturing into developing Vision-Language-Action (VLA)models (Brohan
et al., 2023; Huang et al., 2023; Reed et al., 2022; Wang et al., 2023b), a promising pathway towards
the ultimate goal of building autonomous agents that can follow and even self-generated instructions
to fulfill various reasoning and acting tasks in open world environments. Among them, two most
prominent architectures have been proposed: 1) Combining an off-the-shelf MLM (Alayrac et al.,
2022; Liu et al., 2024) with separate goal-conditioned controllers (Cai et al., 2023a,b; Lifshitz et al.,
2023), where MLM reasons, plans and pilots the controllers by producing textual goal instructions,
e.g. DEPS (Wang et al., 2023c), JARVIS-1 (Wang et al., 2023b), voyager (Wang et al., 2023a); 2)
Tuning a pretrained MLM into producing control commands directly, while maintaining the reasoning
and language capabilities, e.g. RT-2 (Brohan et al., 2023), LEO (Huang et al., 2023). However,
these two designs could still have significant drawbacks when it comes to open-world environments.
First, an open world (e.g., Minecraft) usually teams up with an infinite number of complex and
highly contextualized tasks (Fan et al., 2022; Lin et al., 2023), and it can be fairly challenging to
depict them in text only. Therefore, VLA models that solely depend on text to communicate with the
text-conditioned policies (Wang et al., 2023b,c) may fail to correctly pilot these controllers. On the

Corresponding author(s): Yitao Liang
Zihao Wang<zhwang@stu.pku.edu.cn>, Shaofei Cai<caishaofei@stu.pku.edu.cn>, Anji Liu<liuanji@cs.ucla.edu>,
Xiaojian Ma<xiaojian.ma@ucla.edu>, Yitao Liang<yitaol@pku.edu.cn>

https://craftjarvis.org/OmniJarvis/

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Figure 1 | Illustration of multi-modal interaction data for decision-making. A canonical interaction sequence
depicting the human decision-making process starts from a given task instruction and memory, followed by a
series of sub-task completion which involves initial observations, chain-of-thought reasoning, and behavior
trajectories. Our proposed VLA model OmniJARVIS jointly models the vision (observations), language
(instructions, memories, thoughts), and actions (behavior trajectories) as unified autoregressive sequence
prediction. A self-supervised behavior encoder (detailed in section 2 and Figure 2) converts the actions into
behavior tokens while the other modalities are tokenized following the practices of MLMs (Alayrac et al., 2022;
Bavishi et al., 2023; Liu et al., 2024).

other side, emitting the control command directly (Brohan et al., 2023; Huang et al., 2023) without
invoking separate controllers could alleviate the aforementioned communication problem but given
the long-horizon nature of open-world tasks, it is less practical to perform long-term control with a
large VLA model as the context length requirement, computation cost and inference efficiency could
become unaffordable.

In this paper, we aim to tackle the aforementioned issues of existing VLA models when facing
open-world environments: complex & context-dependent tasks and long-term tasks. Our key
insight originates from the observation of human decision-making: Given these open-world tasks,
humans can make informed decisions via multi-round mental, verbal, and physical interactions
(an illustration can be found in Figure 1). Therefore, if the VLA model can manage to learn from
such interaction data, it may master the underlying human decision-making procedures. However,
modeling interaction data is non-trivial: it is multi-modal, encloses vision (mostly observations),
language (instructions, thoughts, etc.), and actions (behavior trajectories). Compared to the fruitful
explorations on jointly tokenizing vision and language (Alayrac et al., 2022; Bavishi et al., 2023; Liu
et al., 2024; Vinyals et al., 2015) into sequences for autoregressive modeling (Brown et al., 2020),
tokenizing behavior trajectories (actions) is hard due to the following reasons. On the one hand,
directly using low-level actions from the environment would pose huge challenges to the model’s
ability to process long sequences, which significantly hurts performance. It also hinders us from
leveraging the planning ability of generative models. On the other hand, language-level action tokens
require significantly more supervision and cannot accurately describe all possible actions.

2

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Behavior Encoder Decoder as Policy

Observations Learnable Tokens

⋯ ⋯

⋯

Finite Scalar Quantizer

Discrete Behavior Tokens
Tokenizer

𝑐! 𝑐"

�̂�! �̂�"

𝑜! 𝑜# 𝑜$

⋯𝑠! 𝑠"

Observations

⋯𝑜! 𝑜# 𝑜$

⋯𝑎! 𝑎# 𝑎$

Behavior Cloning
DeTokenizer

Figure 2 | Self-supervised learning for behavior tokenizer of OmniJARVIS. We modify the VAE-based
self-supervised learning of behavior trajectories in (Cai et al., 2023b) to train the behavior tokenizer and
de-tokenizer in OmniJARVIS. Specifically, we adopt the auto-encoding objective but replace the Gaussian
latent with a discrete representation based on Finite Scalar Quantizer (Mentzer et al., 2023). The encoder
will then be used as the behavior tokenizer to produce discrete tokens from the actions (behavior trajectories)
in multimodal interaction data, while the behavior tokens emitted by OmniJARVIS will be sent to the policy
decoder to perform motor control.

To this end, we propose OmniJARVIS, a novel VLA model that jointly models vision , language ,
and actions in interaction data with unified tokenization. OmniJARVIS comprises two key ideas:
1) Behavior Tokenization. We introduce a self-supervised approach to learn a behavior encoder
that produces discretized tokens for actions (behavior trajectories) and an imitation learning policy
decoder conditioned on these tokens (section 2); 2) Autoregressive Modeling. By augmenting these
behavior tokens into the vocabulary of pretrained MLMs, we pack the multimodal interaction data into
unified token sequences and learn a transformer on these sequences with an autoregressive modeling
objective. We conduct comprehensive evaluations in the open-world Minecraft Universe (Lin et al.,
2023). OmniJARVIS demonstrates impressive performances on a wide range of atomic, programmatic,
and open-endedMinecraft tasks. Our analysis confirms several critical design choices in data formation,
tokenization, and the scaling potential of OmniJARVIS. Our contributions are as follows:
• We propose OmniJARVIS, a novel VLA model capable of following instructions to reason, plan, and

act in open-world environments by jointly modeling vision , language , and actions in multimodal
interaction data for decision-making.

• We propose a self-supervised approach to learn a behavior encoder to tokenize actions and an
imitation learning policy decoder to produce control commands from behavior tokens emitted by
OmniJARVIS, allowing joint learning of VLA and smooth action readout.

• We conduct extensive evaluations in open-world Minecraft Universe to demonstrate OmniJARVIS’s
proficiency across various tasks, and present in-depth analyses to reveal valuable insights.

2. A Tokenizer for Behaviors

As illustrated in Section 1, a key challenge for VLA is the mismatch between the action modality
and other modalities such as the language instructions. A key insight is that a good amount of
knowledge about the effects of actions can be learned directly from behavior trajectories {𝜏(𝑖) }𝑖. We
propose to learn a behavior tokenizer in addition to the well-studied vision and language tokenizers
to achieve unified tokenization of the vision , language , and actions in multimodal interaction data
(Figure 1). We pose two main requirements to the behavior tokens. First, they should be able to
express complete and diverse behavior from (short) trajectories. Further, the tokens should contain
semantic information so that they are compatible with the other modalities, which enables the

3

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Figure 3 | Architecture and Inference of OmniJARVIS. The main body of OmniJARVIS is a multimodal
language model (MLM) augmented with additional behavior tokens. Given a task instruction, initial memory,
and observation, OmniJARVIS will iteratively perform chain-of-thought reasoning and produce behavior tokens
as a means of control via the decoder policy (behavior de-tokenizer). Every 128 steps, OmniJARVIS is forced to
reason again and produce new behavior tokens with the latest observation. (Not shown above) OmniJARVIS
can also make textual responses, e.g. answering questions.

reasoning and planning ability of LLMs (e.g., by conducting chain-of-thought reasoning).
Specifically, we aim at producing a set of 𝑁 discrete behavior tokens 𝑠bhv1 , . . . , 𝑠bhv𝑁 from a behavior

trajectory 𝜏 = {𝑜0, 𝑎0, . . . }. Further, a de-tokenizer is needed to map these tokens back to an action
rollout in the environment that reproduces the goal achieved in 𝜏. GROOT (Cai et al., 2023b) explores
a VAE-based approach to jointly learn a latent representation of behavior trajectories and an imitation
learning policy decoder that conditions the latent as goal. However, the continuous latent cannot
be used as the behavior tokens as they can be more difficult to learn and decode with the existing
discrete tokens of pretrained MLMs (Huang et al., 2023; Ma et al., 2022). Therefore, we replace the
Gaussian latent in GROOT with an improved vector quantized discrete latent called Finite Scalar
Quantization (FSQ) (Mentzer et al., 2023). We adopt a quantization configuration of [8, 8, 8, 6, 5],
which means a code with a length=5 and a codebook size of 8×8×8×6×5 = 15360 is produced. The
configuration is selected by a simple grid search. Overall, the behavior tokenizer (behavior encoder)
𝑒𝜙(𝑜1;𝑇) and the de-tokenizer (IL policy decoder) 𝜋𝜃(𝑎𝑡 |𝑜1:𝑡) is learned with the following objective:

argmin
(𝜙,𝜃)

𝔼𝜏∼D

[
𝑇∑︁
𝑡=1

− log𝜋𝜃(𝑎𝑡 |𝑜1:𝑡, 𝑓 (𝑒𝜙(𝑜1:𝑇)))
]
, (1)

where 𝑓 (·) denotes the finite scalar quantizer. We choose a non-causal (bidirectional) transformer
and a causal transformer to parameterize the encoder 𝑒𝜙(𝑜1;𝑇) and the policy decoder 𝜋𝜃(𝑎𝑡 |𝑜1:𝑡),
respectively. In practice, we set 𝑇 = 128 as the trunk size of the behavior trajectory to be encoded.
We will discuss how to handle trajectories longer than 128 in the next section.

Compared to our behavior tokenization, most prior work in VLA models, either represents the
behavior trajectories in interaction data as a textual goal description and invokes a separate goal-
conditioned controller (Wang et al., 2023b,c), or represents the state-action sequence {𝑜0, 𝑎0, . . . }
directly as in Decision Transformers (DT) (Brohan et al., 2023; Chen et al., 2021; Huang et al., 2023;
Reed et al., 2022). Our approach offers a more compact but still informative representation of the
actions part in multimodal interaction data. Moreover, the action readout, i.e. simply sending the
behavior tokens to the policy decoder, is also more efficient than the DT-style direct control from VLA
models (Brohan et al., 2023; Huang et al., 2023; Reed et al., 2022).

4

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

3. Multimodal Interaction Data and OmniJARVIS

As illustrated in Figure 1, canonical multimodal interaction data comprises vision (observations),
language (instructions, memories, thoughts), and actions (behavior trajectories). However, it can be
difficult to directly collect such interaction data from human annotators. Therefore, we propose to
convert an existing Minecraft gameplay dataset (Baker et al., 2022) into the multimodal interaction
data required by OmniJARVIS. We begin with a formal definition of the interaction data, followed by
our approach for data conversion and augmentation from existing datasets, and finish up with the
architecture, formulation of learning on such interaction data, and inference procedure of OmniJARVIS.
An overview of OmniJARVIS architecture and inference can be found in Figure 3.

3.1. Data Formation

An interaction sequence of decision-making 𝔻 = {𝐷𝑡}𝑇𝑡=0 comprises 𝑇 segments. Each segment 𝐷𝑡 can
be a sentence of text words {𝑤𝑖}𝑁𝑖=1, i.e. the language part such as instructions 𝐷inst

𝑡 , memory 𝐷mem
𝑡

or thoughts 𝐷tht
𝑡 . 𝐷𝑡 can also be an image 𝐼, i.e. the vision part such as observations 𝐷obs

𝑡 = 𝐼. Finally,
𝐷𝑡 may belong to the action (behavior trajectory) part, i.e. 𝐷bhv

𝑡 = {𝑜0, 𝑎0, . . . }. We assume these
segments follow the ordering below (Figure 1):

𝐷inst
0 , 𝐷mem

1︸ ︷︷ ︸
Context

, 𝐷obs
2 , 𝐷tht

3 , 𝐷bhv
4︸ ︷︷ ︸

sub-task 1

, 𝐷obs
5 , 𝐷tht

6 , 𝐷bhv
7︸ ︷︷ ︸

sub-task 2

, . . . (2)

We tokenize such a sequence of segments into a series of tokens {𝑠0, . . . , 𝑠𝑀} using the vision and
language tokenizer offered by a pretrained MLM and the behavior tokenizer introduced in section 2.

3.2. Preparing Multimodal Interaction Data

In reality, many segments of the multimodal interaction 𝔻 can be missing in public datasets. We
consider the Minecraft contractor data released by OpenAI (Baker et al., 2022) and it only contains
behavior trajectories 𝐷bhv

𝑡 . Therefore, we need to properly augment the data with the additional
textual segments including instructions 𝐷inst

𝑡 , memory 𝐷mem
𝑡 , and thoughts 𝐷tht

𝑡 . We follow the prior
practices (Huang et al., 2023; Liu et al., 2024) to synthesize the required text using LLMs. Below, we
detail how each type of segment is constructed. More details can be found in appendix.
Synthesis of instruction 𝐷inst

𝑡 . The instruction is a high-level description of what task is being
performed in the current interaction sequence. The considered OpenAI Minecraft data includes meta
information of each gameplay video, which depicts fundamental events that happened during in
Minecraft gameplay, e.g. what block was just destroyed, what entity was just killed, what item was
just crafted, etc. Such meta-information can provide a basic overview of what the player has been
through in the gameplay. We therefore prompt an LLM into summarizing the gameplay with the
meta information. The summary will then be used as the instruction 𝐷inst

𝑡 of the current interaction
trajectory.
Synthesis of memory 𝐷mem

𝑡 . The memory is the summary of what agents have finished in the previous
interaction sequences. Due to the limited sequence length that the auto-regressive model can handle,
the model needs to learn to summarize key information related to the task in historical interactions
and ignore behaviors unrelated to instructions. The memory will be updated based on the results
of each episode trunk and used for subsequent episode trunks. We therefore prompt an LLM into
summarizing the gameplay with the meta information. The summary will then be used as the memory
𝐷mem
𝑡 of the current interaction trajectory. The memory prompt can be found in Appendix G.

5

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Synthesis of thought 𝐷tht
𝑡 . The thought is the agent’s reasoning and explanation of its own decisions.

Previous methods have confirmed that using thought-enhanced interaction data helps language
models understand decision-making (Hu and Clune, 2024). Compared to labeling thoughts by
humans (Brohan et al., 2023; Yao et al., 2022), we assume that thought is an intermediate variable
that can be determined by the actions taken and observations made before and after the action, which
is similar to an Inverse Dynamics Model (Baker et al., 2022). We therefore prompt an LLM into
estimating the thought of decisions with in-context learning, which will then be used as the thought
𝐷tht
𝑡 of the current behavior. Details can be found in Appendix F.

3.3. Architecture, Training, and Inference of OmniJARVIS

As illustrated in Figure 3, OmniJARVIS is built upon a pretrained MLM. We augment the original
vocabulary of the MLM with additional tokens from the behavior tokenizer. Specifically, as we adopted
the [8, 8, 8, 6, 5] FSQ configuration (section 2), we augment with 8 + 8 + 8 + 6 + 5 = 35 new tokens as
each behavior comprises 5 behavior tokens 𝑠𝑏ℎ𝑣1 , . . . , 𝑠𝑏ℎ𝑣5 corresponding to 5 FSQ level. We formulate
the learning objective of OmniJARVIS following (Brown et al., 2020; Raffel et al., 2020) in a prefix
language modeling fashion. For a batch B of token sequence 𝑠, we optimize OmniJARVIS via:

L(𝜃,B) = −
| B |∑︁
𝑏=1

𝑇∑︁
𝑡=1

log 𝑝𝜃(𝑠(𝑏,𝑡)res |𝑠(𝑏,<𝑡)res , 𝑠
(𝑏,1)
prefix, ..., 𝑠

(𝑏,𝐿)
prefix), (3)

where 𝑠prefix denotes the prefix token, which is tokenized from the segments that served as context for
reasoning and decision-making, i.e. instruction 𝐷inst

𝑡 , memory 𝐷mem
𝑡 and observation 𝐷obs

𝑡 within the
interaction sequence (Equation 2). The remaining tokens (tokenized from thought 𝐷tht

𝑡 and behavior
trajectory 𝐷bhv

𝑡) will be predicted in an autoregressive fashion. From a high level, OmniJARVIS is
trained to reason (producing thought tokens) and act (producing behavior tokens) from contexts with
task instructions, memory, and current observations. During inference, we begin with the feeding
OmniJARVIS with a task instruction, an empty memory, and an initial observation. OmniJARVIS
will produce a chain-of-thought as a means of reasoning and subsequently, emit behavior tokens for
control. Every 𝑁 steps, it is forced to reason again to produce new behavior tokens with the latest
observation. We empirically set 𝑁 = 32.

4. Capabilities and Analysis

4.1. Overview

Training details and Datasets. The training of the OmniJARVIS is divided into two stages. In the first
step, we use a self-supervised training method to train a Behavior Tokenizer, including the Encoder
and Decoder jointly. We use FSQ as a quantization method and build a codebook with 8*8*8*6*5
discrete codes. The training data for Behavior Tokenizer comes from Contractor Dataset (Baker
et al., 2022), which is a collection of Minecraft gameplay videos. The training parameters and details
remain consistent with GROOT, which can be found in Appendix A.

In the second stage, we use this behavior tokenizer to process Minecraft offline trajectories to
obtain behavior token sequences. We add 35 (8+8+8+6+5) additional tokens to the MLM tokenizer
as behavior tokens for unified representation, so each time the VLA needs to output a continuous
sequence of 5 tokens to represent a complete behavior. We use GPT-3.5 to synthesize thought, memory,
and instruction to raw offline datasets to build complete interaction data. The specific prompt can be
found in Appendix F. These data collectively constitute the embodied instruction-following dataset of
OmniJARVIS, including 600k trajectories and about 900M tokens.

6

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Figure 4 | Evaluation results of different agents on atom tasks. The text-conditioned VPT agent (Baker et al.,
2022) is from Appendix I of its paper (VPT (text)∗).

The training dataset of OmniJARVIS further includes a large amount of QA data about Minecraft.
We generate a large number of seed questions about these texts using web pages on the Minecraft
wiki. Then, we use the self-instruct method to generate a large number of creative questions and
instructions. This constructed QA dataset consists of 300k conversations with about 90M tokens.
During the training process, the QA data and instruction-following data are mixed, with a total of
about 1T tokens, to train OmniJARVIS. In specific, we SFT (supervised finetune) LLaVA-7B (Liu et al.,
2024). The details can be found in Appendix A. To further demonstrate the generalizability of the
method, we also fine-tune LLaVA at different scales and VLM Fuyu-8B with different architectures.
The relevant results are presented in Section 4.5 and Section 4.6.
Experimental Setups. We conduct experiments in the complex and open-world environment of
Minecraft, a voxel-based 3D video game that has garnered significant attention from real-life research
due to its popularity and diverse mechanics (Fan et al., 2022; Guss et al., 2019). We first evaluate
OmniJARVIS with atomic tasks, which are skill-level tasks, testing VLAs’ ability to follow simple
and straightforward instructions. Then we evaluate OmniJARVIS with programmatic tasks, which
require the agent to obtain an item starting from an empty inventory. The success of these tasks
requires VLAs to decompose the provided instruction into atomic-level subtasks, and hence tests VLAs’
complex reasoning ability. Finally, we test OmniJARVIS with open-world embodied question-answering
benchmarks and creative free-form instruction-following. We also conduct ablation experiments of
OmniJARVIS with different behavior tokenizers, different training dataset formats, and different
vision tokenizations. Finally, we explore the scaling potential of OmniJARVIS with different models
and data scales.

4.2. Main Results I: Atomic Tasks

Atom tasks are various simple skills that agents in Minecraft need to master. They are basic tasks
yet are fundamental skills that agents need to master during the learning process. We first evaluate
OmniJARVIS with our learned behavior tokenizer on these tasks.

We select “chopping trees” , “digging dirt” , “mining stones” , and “collecting wheat seeds”
as the evaluation tasks. We directly take those short task descriptions as instructions for agents.

We use text-conditioned VPT (Baker et al., 2022), Open-world Control (Cai et al., 2023a), STEVE-
I (Lifshitz et al., 2023), and video-instructed GROOT (Cai et al., 2023b) as baselines. We compute
the average rewards of different agents on every task in Figure 4 across 10 runs. By observing the
environment and adjusting action tokens dynamically, OmniJARVIS effectively follows straightforward
instructions across various scenarios. It consistently achieves a high average reward with minimal
standard deviation.

7

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Table 1 | Success rate of different agents on programmatic tasks. We distinguish different methods through
action tokenizer, where STEVE-I (Lifshitz et al., 2023) and GROOT (Cai et al., 2023b) directly output actions,
GPT (Huang et al., 2022a), ReAct (Yao et al., 2022), and DEPS (Wang et al., 2023c) output language as goals,
and then use STEVE-I to output actions. OmniJARVIS uses the self-supervised discrete action tokenizer.

Method Action Tokenizer Wooden (10) Food (5) Stone (5) Iron (5) Diamond (5) Average (30)
STEVE-I Native 0.04±0.07 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01
GROOT Native 0.05±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.02
GPT Language 0.26±0.14 0.08±0.04 0.24±0.05 0.04±0.05 0.00±0.00 0.15
ReAct Language 0.44±0.11 0.12±0.04 0.30±0.10 0.06±0.05 0.00±0.00 0.23
DEPS Language 0.78±0.11 0.12±0.04 0.68±0.08 0.16±0.05 0.04±0.05 0.43

OmniJARVIS FSQ GROOT 0.95±0.07 0.44±0.05 0.82±0.08 0.32±0.11 0.08±0.04 0.59

4.3. Main Results II: Programmatic Tasks

To further verify the ability of OmniJARVIS to complete tasks with long sequences, we use 30
programmatic tasks to evaluate the performance of different agents. These tasks require the agent
to start from an empty inventory in a new world until obtaining the final required items, which is
usually a chain of atom tasks. These tasks are divided into five groups based on difficulty: wooden,
food, stone, iron, and diamond. For example, the prompt for task “Obtain a diamond pickaxe” is
“Give you nothing in the inventory, obtain a diamond pickaxe.” This task requires more game time
and more complex planning for up to 10 different intermediate items (Baker et al., 2022).

Baselines are divided into two types. 1) directly outputs actions, namely the native behavior
tokenizer, including STEVE-I (Lifshitz et al., 2023) and GROOT (Cai et al., 2023b). 2) using pretrained
LLM as a planner to output language goals and connect the STEVE-I to execute these goals, including
Zero-Shot Planner (GPT) (Huang et al., 2022a), ReAct (Yao et al., 2022), and DEPS (Wang et al.,
2023c). We use success rate to evaluate the completion of tasks, that is, whether the task is completed
within the specified time. The experimental results are listed in Table 1.

Programmatic Tasks usually require complex reasoning for planning. While STEVE-I and GROOT
can only finish short skill-level tasks in atom tasks, is difficult to finish these programmatic tasks.
Agents based on Language behavior tokenizer can complete complex tasks including diamond group
ones, but with a low success rate. This is because these in-context learning methods leverage the
pretrained LLM which may lack the necessary knowledge about this world. It is worth noting that in
the Food group, agents based on Language Tokenizer have an average success rate of around 10%,
as this set of tasks does not require complex reasoning. This indicates that Language-conditioned
Tokenizers need additional language-conditioned trajectories as supervision for training while there
was less such data available during STEVE-I’s training phase leading to significant performance gaps.
Meanwhile, OmniJARVIS uses a self-supervised trained behavior tokenizer which does not require
extra language labels and hence receives more training resulting in good performance across a wider
range of tasks. We will further prove this in the next set of Creative Task experiments.

4.4. Main Results III: Open-Ended Tasks

The open-ended tasks differ from programmatic tasks due to the lack of straightforward success
criteria (Fan et al., 2022). We select the long-term creative tasks which usually need at least 5 minutes
of human-playing time to finish. The task prompts can be found in Appendix D. Following image
generation and video generation tasks (Heusel et al., 2017; Unterthiner et al., 2018), we take the
Fréchet Sequence Distance (FSD) metrics to evaluate the correlation between agent rollout video
and creative instruction. Specifically, we first ask human experts to finish the creative task prompts

8

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Table 2 | Evaluation results on open-ended tasks, including instruction-following and embodied question-
answering. The values in Instruction-Following tasks are represented by FSD scores from rollout videos, where
lower scores indicate better performance. In Question-Answering tasks, the values are GPT-4 elo rating scores,
with higher scores indicating better performance.

VPT STEVE-1 Voyager DEPS OursInstruction
Following ↓ 975.93 972.79 932.16 929.52 886.25

Vicuna-7B Vicuna-13B LLaMA-2-70B ChatGPT-3.5 OursQuestion
Answering ↑ 2.34 2.85 2.50 7.50 8.40

Table 3 | Ablation experiments on OmniJARVIS with different behavior tokenizers, vision tokenizers, and
training on different interactive datasets. The first line is training on the unconditional interactive dataset, i.e.,
without instructions on the trajectories. OmniJARVIS with VQ-GROOT (Cai et al., 2023b; Van Den Oord et al.,
2017) shows no results because of training collapse.

Dataset Format LossBehavior
Tokenizer

Vision
Tokenizer Instruction Caption Thought Memory Train Eval

✗ (unconditional) 0.33 0.67
✓ ✗ ✗ ✗ 0.46 0.51
✓ ✓ ✗ ✗ 0.44 0.48
✓ ✓ ✓ ✗ 0.32 0.33

FSQ GROOT LLaVA

✓ ✓ ✓ ✓ 0.16 0.17
FSQ GROOT Captioner+ ✓ ✓ ✗ ✗ 0.49 0.52
FSQ GROOT FUYU ✓ ✓ ✗ ✗ 0.42 0.44
GROOT LLaVA ✓ ✓ ✓ ✓ 0.44 0.48
VQ GROOT LLaVA ✓ ✓ ✓ ✓ - -

under randomly generated worlds and record the game-playing videos 𝑉human. Then, we provided
the task prompts for different Minecraft agents, and obtained a rollout video set 𝑉agent. Similar to
FID (Heusel et al., 2017), we used MineCLIP (Fan et al., 2022) to calculate the embedding of video
clips and computed FSD for the embedding distributions of human and agent rollout videos. The
analysis of the metrics can be found in Appendix B.

We further conduct creative embodied question-answering benchmarks to further evaluate the
ability of the agent to complete creative instructions and grasp world knowledge. The questions
answering instructions set can be found in Appendix C. The full evaluation results can be found in
Table 2.

OmniJARVIS is the agent that can simultaneously complete both types of tasks and has achieved
the best performance in different task sets, surpassing strong baselines including Voyager (Wang et al.,
2023a) and DEPS (Wang et al., 2023c). Also, it maintains strong reasoning capability, especially on
embodied question answering compared to LLM baselines (with image captions as visual context).

4.5. Insights and Analysis

Interactive Dataset Format. We explore the crucial roles played by the different type of segments in
interaction data, including the instruction, memory, thought, and caption tokens. The results can be
found in Table 3, where we evaluate the loss on predicting the behavior tokens. It can be seen that
instruction and thought can be more critical to the successful prediction of behavior tokens. This is
consistent with our hypothesis – making informed decisions requires task instruction and reasoning.
Vision Tokenization. We also evaluate training OmniJARVIS with different vision tokenization,
including ImageCaptioner + LLaMA2-7B (Chen et al., 2023; Touvron et al., 2023) (basically converting

9

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Table 4 | Ablation experiments on behavior tokenizer with different code vocabulary size.
Codebook

size
FSQ
Levels

Training
Iterations

Train
Loss

Eval
Loss

Reconstruction
FSD ↓

Sampling
FSD ↓

Average
Rewards ↑

Codebook
Usage

e8 [8,6,5] 180k 2.746 3.161 46.57 68.90 0.63±0.67 93.75%
e10 [8,5,5,5] 180k 3.011 3.148 43.67 61.85 0.54±1.21 97.65%
e14 [8,8,8,6,5] 240k 3.092 3.116 42.72 57.37 2.27±2.45 92.36%

Provided Generated

Figure 5 | Examples of behavior tokenization-detokeinzation. Left: the reference video to be tokenized by
our FSQ-based behavior tokenizer (encoder). Right: the behavior of the policy decoder is conditioned on the
behavior tokens. The policy decoder can reproduce the task being accomplished in the reference video.

the vision input into textual captions), fuyu-8b (Bavishi et al., 2023), and LLaVA-7B (Liu et al., 2024)
architecture. For the ImageCaptioner+, we fix the ImageCaptioner models and only fine-tune the
language model, i.e., LLaMA2-7B. We use the prediction loss of behavior tokens as the evaluation
criterion, namely eval loss. We found that the model trained with LLaVA-7B architecture has the
lowest evaluation loss, so we chose this model as the default model.
Behavior Tokenizer. We explore OmniJARVIS with different behavior tokenizers, including the
default setting using FSQ codebook, a variant of using VQ-VAE instead of FSQ (Van Den Oord et al.,
2017), and simply using sub-goal language annotation as behavior “tokens”. The evaluation results on
4 programmatic tasks are listed in Table 3. Using an FSQ tokenizer is generally better than a language
goal, which confirms the advantages of using a tokenized behavior over language descriptions of
behavior. The use of VQ-VAE as a quantized behavior tokenizer collapsed during the training process,
so there were no results in all test tasks.
Behavior Codebook. We conduct an in-depth investigation of behavior tokenizers with varying
codebook sizes, utilizing recommended sets of FSQ levels to approximate specified codebook di-
mensions (Mentzer et al., 2023) as delineated in Table 4. We evaluate performance across multiple
metrics for each codebook size. Codebook Usage is quantified as the proportion of codewords
utilized at least once when encoding the validation datasets. Reconstruction FSD is measured by
the FSD scores derived from the MineCLIP encoder (Fan et al., 2022), processing 1,000 different
demonstration videos through the FSQ-GROOT and subsequent rollout in a randomly generated
environment. Additionally, we measure Resampling FSD, which is the FSD score obtained when the
environment rollout is conditioned on representations sampled from the codebook. Finally, we assess
the average rewards for the task “collect wood” using OmniJARVIS across varying codebook sizes.
Our findings indicate that increases in codebook size correlate with enhanced average rewards and
reduced FSD scores, suggesting a scalable performance in OmniJARVIS with larger codebooks.
Behavior Semantics. We provide some qualitative analysis on the learned FSQ-based behavior
tokenizer. In Figure 5, we tokenize several reference videos, then feed the behavior tokens to the
policy decoder and see if it can accomplish the same task as in reference videos. The results indicate
that our behavior tokenizer is able to capture such behavior semantics and offers rich task information.

10

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

4.6. Scaling Potential of OmniJARVIS

Figure 6 | Scaling potential of OmniJARVIS. Its
evaluation loss continues to drop with the growth
of data and model parameters. The Pearson coeffi-
cients for the 2B, 7B, and 13B models are 0.9991,
0.9999, and 0.9989 respectively.

We investigate the scaling effect (Kaplan et al., 2020;
Lin et al., 2024) of data and model in OmniJARVIS
by monitoring the instruction-following loss on the
validation set as the amount of data increases. In
addition to fine-tuning from the default LLaVA-7B,
we include two additional scales: OmniJARVIS-2B
(fine-tuned from LLaVA-2B with Gemma-2B language
models (Hinck et al., 2024)) and OmniJARVIS-13B
(fine-tuned from LLaVA-13B with LLaMA2-13B lan-
guage models (Liu et al., 2024)).

The validation loss curves in Figure 6 reveal the
following insights: 1) When using Omni-Tokenizer,
OmniJARVIS’s instruction tuning aligns with the scal-
ing law (Kaplan et al., 2020). All curves exhibit a
log-linear decrease as the data scale increases. 2)
Scaling up VLM consistently enhances performance.
Notably, OmniJARVIS-7B demonstrates significantly
lower losses compared to OmniJARVIS-2B. However,
while improvements are consistent, the difference between OmniJARVIS-7B and OmniJARVIS-13B
seems less pronounced, hinting at potential saturation when further scaling up VLM. This underscores
both the scalability of OmniJARVIS and the importance of increasing data volume to match the model.

5. Related Works

Pretrained Language Models for Decision-making. Several works have explored leveraging LLMs
to generate action plans for high-level tasks in embodied environments (Brohan et al., 2022b; Huang
et al., 2022a; Liang et al., 2022; Zhang et al., 2023). To better perform complex planning in
the environment, existing methods usually utilize chain-of-thought (Wei et al., 2022) or related
methods (Yao et al., 2022). To better cope with uncertainties in open worlds, some LLM-based
methods generate plans interactively with human and environmental feedback (Huang et al., 2022b;
Shinn et al., 2023; Wang et al., 2023c) and retrieving from memory (Wang et al., 2023b) or internet
corpus (Wang et al., 2024). However, those plans can only be executed in a language environment or
require an additional controller or code executor to interact in an open world.
Vision-Language-Action Models. In order to better utilize the knowledge inside the language model
for decision-making, some methods tend to use decision datasets to fine-tune pretrained language
models (Driess et al., 2023; Durante et al., 2024). Gato (Reed et al., 2022) was among the first
to tokenize environment-provided actions to enable joint sequential modeling across modalities.
PaLM-E (Driess et al., 2023) generates high-level instructions as texts and uses dedicated controllers
to perform the task described by the output instructions. The RT series focuses more on robotics
settings. Specifically, RT-1 pairs a VLM with a language-conditioned controller; RT-2 extends the VLM
to directly include control tokens; RT-X generalizes to new robots and environments. A recent VLA
model LEO (Huang et al., 2023) expands the perception from 2D images to 3D world and enables
rich scene-level reasoning and control tasks.
Open-world Agents in Minecraft. As LLMs have achieved remarkable reasoning results and un-
derstanding capabilities across various domains, the year 2023 has witnessed researchers adopting
multiple LLM-based approaches to create open-world agents in Minecraft (Wang et al., 2023a,b,c;

11

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Figure 7 | Comparative Framework of Vision-Language Action Models. (a) depicts a model where upon
receiving a language instruction, actions are directly output based on the environmental state, facilitating
immediate interaction with the environment at a unified frequency. Smaller models with <1B parameters like
VPT (Baker et al., 2022) maintain higher frequencies (>20Hz), though their capability for complex reasoning
tasks is limited. Larger models with >7B parameters such as RT-2 (Brohan et al., 2023), offer enhanced
performance but operate at significantly reduced frequencies (2-3Hz). (b) illustrates a common approach
utilizing large vision-language models for planning, subsequently outputting language goals (Brohan et al.,
2022a; Driess et al., 2023; Wang et al., 2023c). A language-conditioned policy then translates these language
goals into actions at a real-time interaction rate of 20Hz, with high-level models re-planning at less than 1Hz.
This hierarchical structure balances interaction frequency and performance, while it requires language as an
intermediary and additional language labels. The training process of high-level vision-language models and
language-conditioned policies are separate, thus performing poorly on tasks that can not be easily connected by
language. (c) (ours) mirrors the hierarchical structure of (b) but differentiates by employing a self-supervised
encoder-decoder policy (Cai et al., 2023b) and FSQ quantization (Mentzer et al., 2023) as a behavior tokenizer.
The upper-level vision-language models produce self-supervised behavior tokens, which are then conditioned
by a policy decoder to output actions, facilitating environment interaction. The behavior tokens are injected
into the training corpus of vision-language-action models, which enables end-to-end inference. This approach
also eliminates the need for external language supervision and scales efficiently.

Zhu et al., 2023). Some methods focus on building policies for low-level skills (Baker et al., 2022; Cai
et al., 2023b; Lifshitz et al., 2023). Building upon the low-level policies to interact with the Minecraft
environment, Wang et al. (2023c), Yuan et al. (2023) and Wang et al. (2023b) focus on leveraging
the pre-trained language models as planners to finish programmatic tasks with in-context learning.
Wang et al. (2023a) adopts the life-long learning scheme and generates code as policies to enable
continual exploration. Some use expert trajectories and Minecraft corpus to fine-tune pre-trained
vision language models for better embodied planning (Qin et al., 2023; Zheng et al., 2023).

6. Conclusion

We’ve presented OmniJARVIS, a novel VLA model that encompasses strong reasoning and efficient
decision-making capabilities via unified tokenization of vision , language , and actions in multimodal
interaction data. The key ideas are learning behavior tokenizer (trajectory encoder) and de-tokenizer
(IL policy decoder) using self-supervised learning on behavior trajectories and autoregressive modeling
of tokenized multimodal interaction data using a pretrained multimodal language model (MLM).
Evaluations on the open-world Minecraft Universe demonstrate its impressive instruction-following
capabilities. Possible future directions include a more in-depth investigation of behavior tokenization,
language capabilities after VLA fine-tuning, and alignment concerns emerging from the unified
interaction modeling and VLA capabilities.

12

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Acknowledgments

This work is funded in part by the National Key R&D Program of China #2022ZD0160301. We thank
a grant from CCF-Tencent Rhino-Bird Open Research Fund. One author is funded in part by NSF
grants #IIS-1943641, #IIS-1956441, #CCF-1837129, an SRA from Meta and a research gift from
Amazon Alexa AI, and a gift from RelationalAI.

References

J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022.

B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro, and
J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos. arXiv
preprint arXiv:2206.11795, 2022.

R. Bavishi, E. Elsen, C. Hawthorne, M. Nye, A. Odena, A. Somani, and S. Taşırlar. Introducing our
multimodal models, 2023. URL https://www.adept.ai/blog/fuyu-8b.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint
arXiv:2212.06817, 2022a.

A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian,
et al. Do as i can, not as i say: Grounding language in robotic affordances. In 6th Annual Conference
on Robot Learning, 2022b.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess, A. Dubey,
C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. arXiv
preprint arXiv:2307.15818, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

S. Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-aware
representation learning and adaptive horizon prediction. arXiv preprint arXiv:2301.10034, 2023a.

S. Cai, B. Zhang, Z. Wang, X. Ma, A. Liu, and Y. Liang. Groot: Learning to follow instructions by
watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023b.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch. De-
cision transformer: Reinforcement learning via sequence modeling. Advances in neural information
processing systems, 34:15084–15097, 2021.

L. Chen, J. Li, X. Dong, P. Zhang, C. He, J. Wang, F. Zhao, and D. Lin. Sharegpt4v: Improving large
multi-modal models with better captions. arXiv preprint arXiv:2311.12793, 2023.

Y. Cheng, C. Zhang, Z. Zhang, X. Meng, S. Hong, W. Li, Z. Wang, Z. Wang, F. Yin, J. Zhao, and X. He.
Exploring large language model based intelligent agents: Definitions, methods, and prospects.
arXiv preprint arXiv: 2401.03428, 2024.

13

https://www.adept.ai/blog/fuyu-8b

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong,
T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint arXiv:2303.03378,
2023.

Z. Durante, B. Sarkar, R. Gong, R. Taori, Y. Noda, P. Tang, E. Adeli, S. K. Lakshmikanth, K. Schulman,
A. Milstein, D. Terzopoulos, A. Famoti, N. Kuno, A. Llorens, H. Vo, K. Ikeuchi, L. Fei-Fei, J. Gao,
N. Wake, and Q. Huang. An interactive agent foundation model. arXiv preprint arXiv: 2402.05929,
2024.

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and
A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale knowledge.
Advances in Neural Information Processing Systems Datasets and Benchmarks, 2022.

R. Gong, Q. Huang, X. Ma, H. Vo, Z. Durante, Y. Noda, Z. Zheng, S.-C. Zhu, D. Terzopoulos, L. Fei-Fei,
et al. Mindagent: Emergent gaming interaction. arXiv preprint arXiv:2309.09971, 2023.

W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdinov. Minerl: A
large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440, 2019.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

M. Hinck, M. L. Olson, D. Cobbley, S.-Y. Tseng, and V. Lal. Llava-gemma: Accelerating multimodal
foundation models with a compact language model. arXiv preprint arXiv:2404.01331, 2024.

S. Hu and J. Clune. Thought cloning: Learning to think while acting by imitating human thinking.
Advances in Neural Information Processing Systems, 36, 2024.

J. Huang, X. Ma, S. Yong, X. Linghu, et al. An embodied generalist agent in 3d world. arXiv preprint
arXiv:2311.12871, 2023.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. ICML, 2022a.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
et al. Inner monologue: Embodied reasoning through planning with language models. arXiv preprint
arXiv:2207.05608, 2022b.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih,
T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances
in Neural Information Processing Systems, 33:9459–9474, 2020.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies:
Language model programs for embodied control. arXiv preprint arXiv:2209.07753, 2022.

S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. McIlraith. Steve-1: A generative model for text-to-behavior
in minecraft. arXiv preprint arXiv:2306.00937, 2023.

H. Lin, Z. Wang, J. Ma, and Y. Liang. Mcu: A task-centric framework for open-ended agent evaluation
in minecraft. arXiv preprint arXiv:2310.08367, 2023.

14

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

H. Lin, B. Huang, H. Ye, Q. Chen, Z. Wang, S. Li, J. Ma, X. Wan, J. Zou, and Y. Liang. Selecting large
language model to fine-tune via rectified scaling law. arXiv preprint arXiv:2402.02314, 2024.

H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information processing
systems, 36, 2024.

X. Ma, S. Yong, Z. Zheng, Q. Li, Y. Liang, S.-C. Zhu, and S. Huang. Sqa3d: Situated question answering
in 3d scenes. arXiv preprint arXiv:2210.07474, 2022.

Y. Man, L.-Y. Gui, and Y.-X. Wang. Situational awareness matters in 3d vision language reasoning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13678–13688, 2024.

F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. Finite scalar quantization: Vq-vae made
simple. arXiv preprint arXiv:2309.15505, 2023.

OpenAI. Gpt-4 technical report, 2023.

Y. Qin, E. Zhou, Q. Liu, Z. Yin, L. Sheng, R. Zhang, Y. Qiao, and J. Shao. Mp5: A multi-modal
open-ended embodied system in minecraft via active perception. arXiv preprint arXiv:2312.07472,
2023.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning
research, 21(140):1–67, 2020.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez, Y. Sulsky,
J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with dynamic memory and
self-reflection. arXiv preprint arXiv:2303.11366, 2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-
gava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

T. Unterthiner, S. Van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly. Towards accurate
generative models of video: A new metric & challenges. arXiv preprint arXiv:1812.01717, 2018.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3156–3164,
2015.

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager: An
open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291, 2023a.

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi. Self-instruct: Aligning
language models with self-generated instructions, 2022.

Z. Wang, S. Cai, A. Liu, Y. Jin, J. Hou, B. Zhang, H. Lin, Z. He, Z. Zheng, Y. Yang, X. Ma, and Y. Liang.
Jarvis-1: Open-world multi-task agents with memory-augmented multimodal language models.
arXiv preprint arXiv: 2311.05997, 2023b.

15

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Z. Wang, S. Cai, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select: Interactive planning
with large language models enables open-world multi-task agents. arXiv preprint arXiv:2302.01560,
2023c.

Z. Wang, A. Liu, H. Lin, J. Li, X. Ma, and Y. Liang. Rat: Retrieval augmented thoughts elicit context-
aware reasoning in long-horizon generation. arXiv preprint arXiv:2403.05313, 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting
elicits reasoning in large language models. 36th Conference on Neural Information Processing Systems
(NeurIPS 2022), 2022.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

H. Yuan, C. Zhang, H. Wang, F. Xie, P. Cai, H. Dong, and Z. Lu. Plan4mc: Skill reinforcement learning
and planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563, 2023.

C. Zhang, K. Yang, S. Hu, Z. Wang, G. Li, Y. Sun, C. Zhang, Z. Zhang, A. Liu, S.-C. Zhu, et al. Proagent:
Building proactive cooperative ai with large language models. arXiv preprint arXiv:2308.11339,
2023.

H. Zhao, Z. Cai, S. Si, X. Ma, K. An, L. Chen, Z. Liu, S. Wang, W. Han, and B. Chang. Mmicl: Empowering
vision-language model with multi-modal in-context learning. arXiv preprint arXiv:2309.07915,
2023.

S. Zheng, Y. Feng, Z. Lu, et al. Steve-eye: Equipping llm-based embodied agents with visual perception
in open worlds. In The Twelfth International Conference on Learning Representations, 2023.

X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, et al. Ghost in the
minecraft: Generally capable agents for open-world enviroments via large language models with
text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023.

16

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

A. Training Details

OmniJARVIS. We utilized the SFTTrainer class from the TRL library by Hugging Face to train the
VLM model. The learning rate was set at 1.4e-5, and a cosine learning rate scheduler was employed.
The weight decay parameter was set to 0 with a warm-up ratio of 0.03. Training took place on 8 A800
GPUs with FSDP, with a batch size of 2 and gradient accumulation steps of 4 using bf16 precision.
The training lasted for one epoch on our generated dataset. The raw interaction dataset comes from
the sections 6xx, 7xx, and 10xx of the contractor dataset provided by OpenAI (Baker et al., 2022)
and the recording interactions of JARVIS-1 Agents (Wang et al., 2023b).
Behavior Tokenizer. Each frame in our experiments has a resolution of 128x128 pixels. We segmented
each episode into multiple trunks, with each trunk consisting of 128 frames. The learning rate was
set at 0.00004, with a weight decay of 0.001. The batch size was configured to 2, and training
was conducted on a cluster of eight NVIDIA 3090 Ti graphics cards. The training dataset comprised
sections 6xx, 7xx, 9xx, and 10xx of the contractor dataset provided by OpenAI (Baker et al., 2022).
The precision for training was set to bfloat16.

B. FSD Computation

This section outlines the computation of FSD score between the generated videos and human gameplay
recordings. First, we divide the videos into trunks of 128 frames. For each segment, we sample 16
frames, with 8 frames in between each sampled frame. These sequences of 16 frames are then fed
through the video encoder of MineCLIP (Fan et al., 2022) to obtain 512-dimensional video embeddings.
Finally, the score is calculated according to (Heusel et al., 2017) between the embeddings of the
generated videos and the reference videos.

We compute FSD scores between and within sets of videos using three distinct tasks, as illustrated
in Figure B.1. A noticeable gap exists between the FSD scores calculated within the same set of videos
and those calculated between different sets. Furthermore, the metric exhibits relative insensitivity
to the number of videos used for computing the score, demonstrating the validity of our proposed
metric.

Figure B.1 | FSD scores between and within sets of videos for two distinct tasks. The horizontal axis represents
the number of videos used for computing the scores, and the vertical axis depicts the corresponding score.

C. Embodied Question Answering Benchmarks

The embodied question-answering benchmarks consist of questions and instructions for Minecraft
benchmarks, consisting of over 100 questions on knowledge question answering, embodied planning,
and math reasoning.

17

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Table 5 | Embodied Question Answering Examples.
Category Question Answer
Planning How to obtain bucket with empty inventory step-by-step in Minecraft? 1. mine 4 log without tool. . .
Planning How to obtain cooked beef with empty inventory step-by-step in Minecraft? 1. kill cow to obtain 1 beef. . .
Knowledge How many materials do I need to collect to make 2 iron ingots in one go? To make 1 iron ingot, you need 1 iron ore and. . .
Knowledge What are the materials to make 1 diamond pickaxe in Minecraft? 3 diamond, 2 stick.
Knowledge What are the materials to make 1 iron helmet in Minecraft? 5 iron ingots.
Knowledge What are the materials to make 1 golden axe in Minecraft? 3 gold ingot, 2 stick.
Knowledge What are the materials to make 1 wooden shovel in Minecraft? 1 planks, 2 stick.
Knowledge What are the materials to make 1 bread in Minecraft? 3 wheat.
Reasoning Can diamond be mined with stone pickaxe in Minecraft? No. Diamond can only be mined with iron. . .
Reasoning Can coal be mined with an iron pickaxe in Minecraft? Yes. Coal can be mined. . .
Reasoning Can obsidian be mined with an iron pickaxe in Minecraft? No. Diamond can only be mined with iron. . .
Reasoning Can lapis lazuli be mined with a diamond pickaxe in Minecraft? Yes. Lapis lazuli can be mined
Reasoning Can emeralds be mined with a stone pickaxe in Minecraft? No. Emeralds can only be mined with an iron. . .
Decision-making <image><inventory> To mine diamonds, what behavior should I do now? craft iron pickaxe

To enhance the LLM-based agent’s understanding of Minecraft, we gathered a large dataset called
Minecraft-Embodied-Question-Answering-300k (mc-eqa-300k). Initially, we extracted language
corpus from the Minecraft Wiki1 and DigMinecraft2 website to create prompts for the language
model (ChatGPT). This resulted in around 50k question-answer pairs. Using these as seed questions,
ChatGPT generated approximately 250k diverse questions on various aspects of Minecraft. To ensure
accurate responses and avoid hallucinations common with existing models like self-instruct (Wang
et al., 2022), we employed a retrieval augmented generation (Lewis et al., 2020) method known as
RAT (Wang et al., 2024) to generate accurate answers. The resulting question-answering dataset,
along with interaction data, form our training dataset for OmniJARVIS.

Example of Embodied Question Answering Generation for Reasoning Group
question: Can stone pickaxe be used to mine diamonds?
answer: No, a stone pickaxe cannot be used to mine diamonds in Minecraft. An iron pickaxe or better is required to
mine diamonds.
question: Can golden pickaxe be used to mine diamonds?
answer: In Minecraft, you cannot use a golden pickaxe to mine diamonds. Diamonds are one of the hardest materials in
the game and require an iron pickaxe or better to mine. Using a gold pickaxe on diamond ore blocks will cause them to
break, but you won’t receive any diamonds as a drop. You’ll just get the diamond ore block itself.
To successfully mine diamonds, you should use an iron, diamond, or netherite pickaxe. These pickaxes have the required
hardness to break diamond ore blocks and yield diamonds when mined.

1https://minecraft.wiki/
2https://www.digminecraft.com/

18

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example of Embodied Question Answering Generation for Planning Group
question: Give you nothing in the inventory, how to obtain diamond pickaxe from empty inventory, generate a step-by-
step plan, start from punching trees, and describe every step in detail.
answer: Obtaining a diamond pickaxe in Minecraft involves several steps, starting from punching trees and eventually
progressing to mining diamonds. Here’s a step-by-step plan to obtain a diamond pickaxe from an empty inventory:
Step 1: Punching Trees
1. **Gather Wood:** Start by punching trees to collect wood blocks. You’ll need at least 3 logs to proceed.
Step 2: Crafting Basic Tools
2. **Craft Wooden Planks:** Open your inventory and turn the logs into wooden planks by placing them in the crafting
grid (4 wooden logs -> 16 wooden planks).
3. **Craft Crafting Table:** Use the wooden planks to craft a crafting table. Place 4 wooden planks in the 2x2 crafting
grid to create it.
4. **Craft Wooden Pickaxe:** With the crafting table, craft a wooden pickaxe using wooden planks and sticks. Place 3
wooden planks in the top row and 2 sticks in the middle row.
Step 3: Finding Stone
5. **Mine Stone:** Use your wooden pickaxe to mine stone blocks. You’ll need at least 3 stone blocks to proceed.
Step 4: Upgrading Tools
6. **Craft Furnace:** Use the crafting table to create a furnace using 8 pieces of cobblestone. Place the cobblestone in
all squares of the crafting grid except the center square.
7. **Smelt Cobblestone:** Use the furnace to smelt the cobblestone into smooth stone. Place the cobblestone in the top
slot of the furnace and fuel (wooden planks, sticks, etc.) in the bottom slot. Collect the smooth stone when it’s ready.
Step 5: Crafting a Stone Pickaxe
8. **Craft Stone Pickaxe:** With the smooth stone, craft a stone pickaxe using cobblestone and sticks. Place 3
cobblestones in the top row and 2 sticks in the middle row.
Step 6: Upgrade to Iron Pickaxe
9. **Find Iron Ore:** Find iron ore blocks underground (usually at lower depths) and mine them using your stone
pickaxe. You’ll need at least 3 iron ore blocks.
10. **Smelt Iron Ore:** Place your iron ore in the top slot of the furnace and use wooden planks as fuel in the bottom
slot. This will smelt the iron ore into iron ingots.
11. **Craft Iron Pickaxe:** With the iron ingots, craft a iron pickaxe using iron ingots and sticks. Place 3 iron ingots in
the top row and 2 sticks in the middle column.
Step 7: Mining Diamonds
12. **Find Diamonds:** Use your iron pickaxe to mine for diamonds. Diamonds are found deep underground, usually
between levels 5 to 12. They appear as blue, sparkly ore blocks.
Step 8: Crafting a Diamond Pickaxe
13. **Craft Diamond Pickaxe:** Once you have collected at least 3 diamonds, craft a diamond pickaxe using diamonds
and sticks. Place 3 diamonds in the top row and 2 sticks in the middle row.
Step 9: Using the Diamond Pickaxe
14. **Mine Ores:** The diamond pickaxe is more durable and efficient than lower-tier pickaxes. Use it to mine a variety
of ores, including iron, gold, redstone, and more.
And that’s it! You’ve successfully obtained a diamond pickaxe from an empty inventory by following these steps.
Remember that Minecraft’s world generation and mechanics might vary slightly depending on the version you’re playing,
so adapt the plan as needed.

19

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example of Embodied Question Answering Generation for Knowledge Group
question: How to craft diamond pickaxe step-by-step, describe every step in details.
answer: To craft a diamond pickaxe in Minecraft, you will need to follow these steps:
1. **Gather Resources:**
- Start by gathering the necessary resources to craft a diamond pickaxe. You’ll need three diamonds and two sticks.
- Diamonds can be found deep underground, typically between levels 1 to 15 in the Overworld. You’ll need an iron
pickaxe or better to mine diamonds. Use this iron pickaxe to mine the diamond ore blocks.
2. **Crafting Sticks:**
- If you haven’t already, craft sticks from wooden planks. Open your crafting table and place two wooden planks vertically
to create four sticks.
3. **Crafting the Diamond Pickaxe:**
- Open your crafting table, which consists of a 3x3 crafting grid.
- Place the three diamonds in the top row.
- Place two sticks in the middle row, one in the center slot and one in the slot just below it.
- Your crafting grid should now look like this:
[D][D][D]
[][S][]
[][S][]
- [D] represents a diamond.
- [S] represents a stick.
- Once you’ve placed the items in the correct pattern, you’ll see a diamond pickaxe appear in the result box of the crafting
table.
4. **Collect the Diamond Pickaxe:**
- Click or drag the diamond pickaxe from the crafting table’s result box into your inventory.
Congratulations! You now have a diamond pickaxe in your inventory. Diamond pickaxes are extremely valuable in
Minecraft because they can mine most blocks faster than other pickaxes and are required to mine certain valuable
resources like obsidian. Be sure to use it wisely and take care of it, as it’s a valuable tool in the game.

D. Prompts for Creative Tasks

Prompts for Creative Tasks
1. Cook the beef with a furnace and recycle the furnace. If you meet night, place and use the bed for sleeping.
2. Explore caves, mine resources, and craft items in Minecraft to progress and survive.
3. Gather resources, craft tools, and cook food in Minecraft.
4. Place a torch on the wall to light the environment. Collect and picking it up when you leave.
5. Craft an oak boat and use it to travel
6. Obtain resources for building and survival by gathering materials and farming resources.
7. Consistently interact with chests to manage inventory contents.
8. Explore and gather resources in Minecraft.
9. Collect and mine azure bluets, deal damage to mobs, and defeat mobs in the game.

10. Do the following tasks sequentially: 1. Gather oak logs and oak leaves from trees. 2. Use oak logs to create oak planks
and then a crafting table. 3. Create sticks from oak planks using the crafting table. 4. Craft a wooden axe and a
wooden pickaxe using sticks and oak planks. 5. Collect materials like mushrooms and brown mushrooms by mining
blocks with the wooden axe. 6. Mine grass, tall grass, and stone using the wooden tools for resources.

11. Harvest sugar cane to obtain multiple sugar cane pieces.
12. Plant and consume wither roses repeatedly.
13. Harvest wheat seeds, plant them, and use the harvested wheat seeds to feed animals or craft items such as bread.
14. Trade with a villager by giving emeralds and books to receive enchanted books as well as new emeralds and books.
15. Mine ice using an iron pickaxe and pick up the ice block obtained.
16. Open a chest in the game to access or manage inventory items.

20

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

E. Prompt for Instruction Generation

Prompt E.1:Prompt for Instruction Generation
Instruction:
This is a paragraph of description of the player’s gameplay in Minecraft. The caption summarizes the current
environmental state and agent behavior, with the timestamp indicating which frame of the video this caption is from.
Please summarize what tasks the agent completed throughout the entire video. Please guess what instruction or task the
player received to exhibit such behaviors. This task should be clear and in details.
IMPORTANT:
DIRECTLY output the task. DO NOT repeat user input. DO NOT add additional explanations or introducement in the
answer unless you are asked to.
Observation:
Stats minecraft.custom:minecraft.interact_with_furnace happens. Gui is open. New stats
minecraft.craft_item:minecraft.cooked_beef happens. Get new item: cooked_beef*9. Get new item: stone_pickaxe*1.
Stats minecraft.use_item:minecraft.stone_pickaxe happens. Stats minecraft.mine_block:minecraft.furnace
happens. Stats minecraft.pickup:minecraft.furnace happens. Get new item: furnace*1. Stats
minecraft.use_item:minecraft.white_bed happens. Stats minecraft.mine_block:minecraft.white_bed hap-
pens. Stats minecraft.pickup:minecraft.white_bed happens. Get new item: white_bed*1. New stats
minecraft.use_item:minecraft.cooked_beef happens. Consume cooked_beef*1. **Task**:
1. Interact with a furnace to smelt cooked_beef and eat the cooked_beef. 2. Place a white_bed and sleep on it to survive
the night.
Observation:
{observation}

Example of Instruction Generation
Example:
Observation:
Consume chest*1. Stats use_item:chest happens. Consume chest*1. Stats use_item:chest happens. Consume chest*1.
Stats use_item:chest happens. Consume chest*1. Stats use_item:chest happens. Consume item: chest*1. Stats
use_item:chest happens. Stats custom:open_chest happens. Open Game 2D GUI. Consume oak_planks*24. Consume
item: birch_planks*5. Stats custom:open_chest happens. Open Game 2D GUI. Consume lapis_lazuli*22. Consume item:
iron_ingot*18. Consume item: potato*30. Consume item: carrot*9. Consume item: wheat*4. Stats custom:open_chest
happens. Consume oak_planks*64. Consume item: oak_planks*44. Stats custom:open_chest happens. Open Game 2D
GUI. Consume item: granite*20. Stats custom:open_chest happens. Open Game 2D GUI. Consume item: oak_sapling*2.
Consume item: birch_sapling*4. Consume item: wheat_seeds*12. Consume item: poisonous_potato*1. Consume
item: bread*1. Stats custom:open_chest happens. Open Game 2D GUI. Stats custom:open_chest happens. Get new
item: wheat*4. Get new item: carrot*9. Get new item: potato*30. Stats custom:open_chest happens. Open Game 2D
GUI. Consume item: wheat*4. Consume item: carrot*9. Consume item: potato*30. Get new item: potato*15. Stats
custom:open_chest happens. Open Game 2D GUI. Consume item: lapis_lazuli*64. Stats custom:interact_with_furnace
happens. Open Game 2D GUI. Consume item: potato*15. Stats custom:open_chest happens. Open Game 2D GUI. Get
new item: iron_ingot*18. Stats custom:interact_with_crafting_table happens. Open Game 2D GUI. Consume item:
stick*28. Get new item: stick*22. Consume item: iron_ingot*18.
Generated Instruction:
Task: Organize and manage inventory by storing items in chests, crafting various items, and using the furnace to smelt
resources efficiently. Also, focus on gathering resources like wood, ores, food items, and plant materials for crafting and
survival purposes.

21

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

F. Prompt for Thought Generation

Prompt F.1:Prompt for Thought Generation
A player is playing Minecraft. I need you to give thought about what behavior it should take next given current situation.
Here are some demonstrations:

Task: "Obtain a diamond"
State: "The image captures a scene from the popular video game, There is a grass block in front of the agent."
Inventory: {’dirt’: 10}
Memory: {}
Thought: "The player has nothing in its inventory, it should first go to harvest some oak logs. However there is a grass
block in front of the agent, it should mine it first to find a way. So the behavior should be {mine_block:grass:1}."
Behavior: {’mine_block:grass’: 1}

Task: "Obtain an iron pickaxe"
State: "In the image, a player in the video game is standing in a dark cave."
Inventory: {’dirt’: 20, ’stick’: 10, ’iron_ore’: 5, ’furnace’: 1, ’stone_pickaxe’: 1}
Memory: {’mine_block:iron_ore’: 5, ’craft_item:furnace’: 1}
Thought: "The player has 5 iron ores in its inventory, it should smelt them to get iron ingots. However, it does not have
enough coal to smelt the iron ores. The player should mine some coal ores first. And using the stone pickaxe in the
inventory can help to mine the coal ores. So the behavior should be {use_item:stone_pickaxe:1, mine_block:coal_ore:1}."
Behavior: {’use_item:stone_pickaxe’: 1, ’mine_block:coal_ore’: 1}

Task: "Harvest logs"
State: "The image captures a moment in the video game The player’s character, standing in the center of the frame, is
holding a crafting table in their hands. The crafting table, which is the main focus of the image, is gray and has a
crafting grid on top of it."
Inventory: {’oak_log’: 20, ’stick’: 8}
Memory: {’use_item:wood_axe’: 40, ’craft_item:stick’: 8, ’mine_block:oak_log’: 20, ’break_item:wood_axe’: 1}
Thought: "The player needs to harvest more logs. However the last memory shows that the player has broken the wood
axe. So the player should craft a new wood axe first. The player has enough logs in the inventory and the crafting table
in the inventory can help to craft the wood axe. So the behavior should be {use_item:crafting_table:1}."
Behavior: {"use_item"crafting_table": 1}

In demonstrations, "Task" is the goal of player. "State" describes the image the player is facing, "Inventory" is
its current inventory and "Memory" contains past behaviors taken by the player. "Memory" is sorted by time, with the
most recent behavior at the end. You should pay attention to recent behaviors. According to these information, players
first generate thoughts about what to do next("Thought") and then take behaviors accordingly("Behavior"). In the first
demo, the behavior is not relevant to the task; in the second demo, the thought considers needs of the task and current
inventory; the third demo considers the memory of the player and identify the need of crafting a new tool to replace the
broken tool. Now think about the following situation:

Task: {task}
State: {state}
Inventory: {inventory}
Memory: {memory}
Thought: {}
Behavior: {behavior}

Given current situation and the behavior the player will take, output a simple thought that will directly lead
to this behavior. Please carefully revise the need of the task, current inventory and recent memory of the player. Be
sure to explain every part of the behavior. The output format should be "Thought: reason...So the behavior should be
{behavior}".

22

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example of Thought Generation
Example:
Task: "The player was instructed to mine various resources and craft tools in Minecraft: 1. Start by mining coal ore and
crafting cooked beef from it. 2. Smelt iron ore and cook food in the furnace. 3. Mine stone to collect cobblestone. 4.
Craft a stone pickaxe and use it to mine various ores like coal, iron, and diorite. 5. Create torches from coal and sticks.
6. Craft a stone pickaxe and an iron pickaxe. 7. Use the iron pickaxe to mine granite and gather resources. 8. Interact
with a crafting table to craft items like an iron pickaxe, torches, and iron ingots. 9. Utilize tools like pickaxes to mine
stones and different ores efficiently. 10. Gather various resources like coal, iron, cobblestone, diorite, and granite. 11.
Keep crafting and mining to progress in the game.These actions showcase a cycle of resource gathering, processing, and
crafting to advance the player’s capabilities and inventory in the game."
State: "The image captures a moment in the video game Minecraft. The player’s character, standing in the center of the
frame, is holding a crafting table in their hands. The crafting table, which is the main focus of the image, is gray and has
a crafting grid on top of it. In the crafting grid, there are several items arranged in rows and columns. Starting from the
top left, there’s a book, followed by a loom in the middle, and a furnace at the bottom. The crafting table is set against
a black background, which contrasts with the gray color of the table and the items on it. At the bottom of the image,
there’s a red banner with the text "Crafting" written on it. This banner adds a pop of color to the otherwise monochrome
image. The overall composition of the image suggests that the player is in the process of crafting something, possibly a
book or a loom, using the items in the crafting grid."
Inventory: {’wooden_shovel’: 1, ’wooden_axe’: 1, ’cobblestone’: 51, ’dirt’: 14, ’andesite’: 23, ’iron_ore’: 7, ’coal’: 31,
’stick’: 54, ’birch_log’: 5, ’birch_planks’: 47, ’furnace’: 1, ’crafting_table’: 1, ’granite’: 4, ’diorite’: 7, ’wooden_pickaxe’: 1}
Memory: {use_item:stone_pickaxe’: 63, ’mine_block:coal_ore’: 9, ’pickup:coal’: 9, ’mine_block:wall_torch’: 1,
’use_item:torch’: 3, ’pickup:torch’: 1, ’mine_block:granite’: 4, ’pickup:granite’: 4, ’mine_block:stone’: 38,
’pickup:cobblestone’: 37, ’mine_block:diorite’: 8, ’pickup:diorite’: 7, ’use_item:cobblestone’: 3, ’mine_block:iron_ore’: 3,
’pickup:iron_ore’: 3, ’break_item:stone_pickaxe’: 1}
Updated Inventory:{’wooden_shovel’: 1, ’wooden_axe’: 1, ’cobblestone’: 51, ’dirt’: 14, ’andesite’: 23, ’iron_ore’: 7, ’coal’:
31, ’stick’: 54, ’birch_log’: 5, ’birch_planks’: 47, ’furnace’: 1, ’granite’: 4, ’diorite’: 7, ’wooden_pickaxe’: 1}
Updated Memory: {use_item:stone_pickaxe’: 63, ’mine_block:coal_ore’: 9, ’pickup:coal’: 9, ’mine_block:wall_torch’:
1, ’use_item:torch’: 3, ’pickup:torch’: 1, ’mine_block:granite’: 4, ’pickup:granite’: 4, ’mine_block:stone’: 38,
’pickup:cobblestone’: 37, ’mine_block:diorite’: 8, ’pickup:diorite’: 7, ’use_item:cobblestone’: 3, ’mine_block:iron_ore’: 3,
’pickup:iron_ore’: 3, ’break_item:stone_pickaxe’: 1 ’use_item:crafting_table’}
Generated Thought:
Thought: The player’s current inventory includes various resources like cobblestone, coal, iron ore, and granite, along
with essential tools like a wooden pickaxe, shovel, and axe. Recent memory indicates the player has been actively mining
various blocks and collecting resources, including coal, granite, and iron ore. However, the memory also shows that the
player’s stone pickaxe has broken. To progress efficiently and craft necessary items, such as torches and better pickaxes,
the player should utilize the crafting table. So the behavior should be {’use_item:crafting_table’: 1}.

23

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

G. Prompt for Memory Summarization

Prompt G.1:Prompt for Memory Summarization
A player is playing Minecraft.The situation of the player contains 4 parts: task, state, inventory and memory. Under this
situation, the player will take a behavior. And after this behavior, the player’s memory will be updated to "Updated
Memory". I need you to give a subpart of the player’s updated memory that is most relevant to its task.
Task is the goal of the player. State describes the image the player is facing, Inventory is its current inventory of items.
Memory contains its past behaviors, each item in memory is its past behavior and the number of this behavior. The
memory is sorted by time, with the most recent behavior at the end. There are mainly 9 types of behavior:
+ ’craft_item:x’ means to craft an item x;
+ ’drop:x’ means to drop an item x;
+ ’use_item:x’ means to use an item x;
+ ’pickup:x’ means to pickup an item x;
+ ’custom’ means to custom its playing status;
+ ’mine_block:x’ means to mine a block x;
+ ’kill_entity:x’ means to kill an entity x;
+ ’entity_killed_by:x’ means the player is killed by an entity x;
+ ’break_item:x’ means an item x got broken.
Here is the player’s current situation:

Task: {task}
State: {state}
Inventory: {inventory}
Behavior: {behavior}
Updated Memory: {updated_memory}

I need you to summarize what the player has done to complete the task according to the updated memory.
Please make sure every part in your summary is relevant to the task. The output format should be: "The player first ...,
then ..., and finally ..." Then in a new line, try to summarize which stage of the task the player is in according to the
memory.

24

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example of Memory Summarization
Example:
Task: "Gather various resources including andesite, granite, diorite, coal, iron ore, and cobblestone using a stone pickaxe.
Craft and use torches for illumination. Upgrade from a wooden to a stone pickaxe and craft a stone sword for defense.
Explore and mine in a systematic way, ensuring to light up the environment with torches and replacing tools as they
wear out."
State: "The image captures a moment in a video game, specifically Minecraft. The scene is set in a dimly lit cave, with a
wooden pillar standing prominently in the foreground. The player’s inventory and score are displayed in the top left
corner of the screen, providing a glimpse into the player’s progress in the game. In the bottom right corner, the player’s
health and hunger bars are visible, indicating the player’s current status in the game. The rest of the screen is filled with
a series of lines of text, each line representing a command or instruction from the game. These commands seem to be
related to the player’s movement and interaction with the environment, guiding the player through their adventure in
Minecraft. The image is a snapshot of a complex digital world, where every command and action is carefully calculated
and executed. It’s a testament to the immersive and engaging nature of video games like Minecraft."
Inventory: {’stone_pickaxe’: 1, ’wooden_axe’: 1, ’oak_log’: 8, ’stone_sword’: 1, ’andesite’: 8, ’coal’: 13, ’oak_planks’:
2, ’charcoal’: 2, ’torch’: 27, ’dirt’: 1, ’furnace’: 1, ’cobblestone’: 108, ’stick’: 21, ’iron_ore’: 2, ’granite’: 15, ’diorite’: 9,
’wooden_pickaxe’: 1} Behavior: {’use_item:wooden_axe’: 1, ’mine_block:oak_fence’: 1}
Updated Memory: {’pickup:dirt’: 1, ’mine_block:oak_leaves’: 4, ’mine_block:andesite’: 8, ’pickup:furnace’:
1, ’use_item:stone_pickaxe’: 169, ’mine_block:stone’: 125, ’craft_item:charcoal’: 4, ’use_item:torch’: 14,
’mine_block:oak_log’: 21, ’mine_block:furnace’: 1, ’craft_item:stone_pickaxe’: 2, ’pickup:oak_planks’: 2,
’craft_item:wooden_axe’: 1, ’craft_item:stick’: 40, ’use_item:wooden_pickaxe’: 13, ’craft_item:air’: 0, ’pickup:andesite’:
8, ’use_item:furnace’: 1, ’mine_block:grass’: 1, ’mine_block:crafting_table’: 2, ’craft_item:furnace’: 1,
’pickup:crafting_table’: 2, ’pickup:coal’: 21, ’mine_block:grass_block’: 1, ’craft_item:torch’: 40, ’pickup:oak_log’: 23,
’pickup:cobblestone’: 124, ’craft_item:oak_planks’: 36, ’craft_item:crafting_table’: 1, ’use_item:crafting_table’: 3,
’use_item:wooden_axe’: 18, ’craft_item:wooden_pickaxe’: 1, ’mine_block:coal_ore’: 21, ’mine_block:granite’: 15,
’pickup:granite’: 15, ’drop:stone_pickaxe’: 1, ’pickup:stone_pickaxe’: 1, ’mine_block:diorite’: 9, ’pickup:diorite’:
9, ’break_item:stone_pickaxe’: 1, ’craft_item:stone_sword’: 1, ’mine_block:iron_ore’: 2, ’pickup:iron_ore’: 2,
’mine_block:wall_torch’: 1, ’pickup:torch’: 1, ’mine_block:oak_fence’: 1}
Generated Summary:
The player first gathered various resources including andesite, granite, diorite, coal, iron ore, and cobblestone using a
stone pickaxe. Then, they crafted and used torches for illumination, upgraded from a wooden to a stone pickaxe, and
crafted a stone sword for defense. Finally, they explored and mined systematically, ensuring to light up the environment
with torches and replacing tools as they wore out.
The player is in the stage of gathering various resources, crafting torches, upgrading tools, and exploring systematically.

H. Examples of OmniJARVIS Interaction Process

The tokens with blue color are prompted from the environment observation and user, and the tokens
with red color are generated by OmniJARVIS.

25

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example 1 of OmniJARVIS Interaction
TASK: Mine stone with an iron pickaxe, gather cobblestone, then switch to gravel, mining it with a wooden shovel to
collect some. Return to mining stone with the iron pickaxe, place torches for visibility, then proceed to mine iron ore
as well. The agent collects items along the way, including gravel and iron ore while constantly gathering cobblestone
throughout the process.
MEMORY: I have mine 13 stone blocks and 1 gravel block.
INVENTORY: iron_pickaxe: 1, wooden_shovel: 1, wooden_axe: 1, cobblestone: 156, crafting_table: 1, andesite: 23,
iron_ore: 4, coal: 31, birch_log: 5, birch_planks: 47, furnace: 1, gravel: 1, granite: 12, diorite: 28, wooden_pickaxe: 1,
stone_pickaxe: 1, dirt: 14, stick: 43

OBSERVATION:
CAPTION: The image captures a moment in the video game Minecraft. The player’s character is standing at the entrance
of a cave, which is characterized by its dark gray walls and ceiling. The floor of the cave is a contrasting light gray, with
a few small rocks scattered about. In the bottom left corner of the screen, the player’s health and hunger bars are visible,
indicating the status of the character. The top right corner of the screen displays the player’s inventory, showcasing a
variety of items including a pickaxe, a sword, and some food. The most striking feature of the image is the text Iron
Pickaxe that appears in the bottom right corner of the screen. This suggests that the player might be using an iron
pickaxe, a common tool in the game for mining. The precise location of the objects and their relative positions contribute
to the immersive gaming experience.
THOUGHT: The player needs to mine iron ore with an iron pickaxe to progress towards the task. Recent memory
indicates a focus on using the iron pickaxe for various mining activities. Since iron ore is a key component in the task’s
objectives and the player already possesses the required tool, the next step should be to mine the iron ore. So the
behavior should be ’use_item:iron_pickaxe’, ’mine_block:iron_ore’.
CONTROL: TOKEN[BEHAVIOR-12372].

26

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Example 2 of OmniJARVIS Interaction
TASK: Task: 1. Smelt iron ingots in a furnace. 2. Craft an iron pickaxe from iron ingots and sticks. 3. Mine diamond ore
blocks using the iron pickaxe, collecting diamonds. 4. Mine redstone ore, collecting redstone. 5. Mine diorite blocks. 6.
Craft a diamond pickaxe using diamonds and sticks. 7. Craft additional diamond pickaxes using cobblestone and the
previous diamond pickaxe.
MEMORY: I have smelt 3 iron ingots.
INVENTORY: oak_log: 9, andesite: 3, dirt: 6, oak_planks: 8, iron_ingot: 3, cobblestone: 124, stone_axe: 1, stone_pickaxe:
1, granite: 15, wheat_seeds: 1, diorite: 9, stick: 7

OBSERVATION:
CAPTION: The image captures a scene from the video game Minecraft. In the center of the frame, a player’s hand is seen
holding a torch, which is ablaze with orange and yellow flames. The torch is being used to ignite a pile of wooden planks
that are stacked haphazardly on top of each other. The planks are brown and appear to be made of wood. The player’s
health and hunger bars are visible in the bottom left corner of the screen, indicating the player’s status in the game. In
the bottom right corner, the player’s inventory is displayed, showcasing the tools at their disposal. The background of
the image reveals a cave-like structure, characterized by stalactites hanging from the ceiling and stalagmites rising from
the floor. The walls of the cave are made of gray stone, providing a stark contrast to the wooden planks. Overall, the
image provides a snapshot of a moment in the game, capturing the player’s interaction with the environment and the
tools at their disposal.
THOUGHT: The player holds enough iron ingots in their inventory, fulfilling the task requirement to craft iron ingots in a
furnace. However, to proceed with the subsequent tasks which involve mining diamond ore and redstone ore, acquiring
an iron pickaxe is crucial. Considering the current inventory, the player possesses the necessary materials to craft an
iron pickaxe - iron ingots and sticks. Crafting the iron pickaxe now will enable the player to move efficiently towards
their goal of mining valuable resources like diamonds and redstone. Therefore, the immediate action should be to craft
an iron pickaxe. So the behavior should be craft_item:iron_pickaxe.
CONTROL: TOKEN[BEHAVIOR-1375].

27

	Introduction
	A Tokenizer for Behaviors
	Multimodal Interaction Data and OmniJARVIS
	Data Formation
	Preparing Multimodal Interaction Data
	Architecture, Training, and Inference of OmniJARVIS

	Capabilities and Analysis
	Overview
	Main Results I: Atomic Tasks
	Main Results II: Programmatic Tasks
	Main Results III: Open-Ended Tasks
	Insights and Analysis
	Scaling Potential of OmniJARVIS

	Related Works
	Conclusion
	Training Details
	FSD Computation
	Embodied Question Answering Benchmarks
	Prompts for Creative Tasks
	Prompt for Instruction Generation
	Prompt for Thought Generation
	Prompt for Memory Summarization
	Examples of OmniJARVIS Interaction Process

